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Long-lived localized field configurations in small lattices: Application to oscillons
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Long-lived localized field configurations such as breathers, oscillons, or more complex objects naturally
arise in the context of a wide range of nonlinear models in different numbers of spatial dimensions. We present
a numerical method, which we call tlagliabatic damping methodlesigned to study such configurations in
small lattices. Using three-dimensional oscillons¢fi models as an example, we show that the method
accurately(to one part in 1D or bettej reproduces results obtained with static or dynamically expanding
lattices, dramatically cutting down in integration time. We further present results for two-dimensional oscil-
lons, whose lifetimes would be prohibitively long to study with conventional methods.

PACS numbe(s): 05.10—a, 11.27+d, 05.45.Yv, 47.1%j

[. INTRODUCTION configurations for obvious reasons: it would take a huge
amount of integration time in order to follow the evolution of
The study of long-lived, localized coherent configurationsthese bound states until their demise. The nonlinear nature of
is of great interest to many areas of physics and engineeringhe problem also has precludédt least so faranalytical
In general, these structures arise within the context of nuestimates for breather lifetimes.
merical studies of effective nonlinear field models, which In the mid-1970s, three-dimensional, breatherlike con-
may describe behavior either already observed in the labordigurations were discovered in the contextgf models by
tory or conjectured to exist in phenomena yet to be observedogolubsky and Makhankop3]. These authors found that,
In contrast to the usual solitonic behavior, which is markedfor certain initial conditions, spherically symmetric bubbles
by localized time-independent configurations, these are timesettled into long-lived configurations that they called pul-
dependent configurations, which nevertheless persist for versons. In 1994, one of us rediscovered these configurations
long times. It is reasonable to suppose that the long lifetimegvhile studying the collapse of subcritical bubbles in the con-
are due to energy exchange promoted by nonlinear couplingext of degenerate and nondegenerafemodels[4]. Since
between different modes which efficiently suppresses the rahe typical behavior characterizing these configurations is the
diation of energy away from the configuration. One may col-high-frequency oscillation about the global minimum of the
lectively call thesepersistent coherent field configurations model, the nam@scillon was chosen instead. A further de-
(PCFCs in order to distinguish them from the usual static tailed analysis revealed more of the remarkable behavior of
coherent configurations that characterize solitonic behaviorthese configurations, such as the dependence of lifetime on
Perhaps the most well-known PCFCs are the oneinitial radius, the minimal radius for the bubbles to settle into
dimensional breathers that appear during low-velocity kink-oscillonic behavior, and the mechanism for their final demise
antikink interactions in sine-Gordon ang® models[1].  [5]. Recent work has pointed out the possible relevance of
These are bound states characterized by nonlinear oscilléaese structures for resonant hadronic stgégs
tions about the energy minimufor vacuum of the model, These configurations are far from being constrained to
typically one of the minima in a degenerate double-well po-relativistic nonlinear field theories. Remarkably similar be-
tential. As argued by Campbedl al, breathers should form havior has been found in experiments involving graios
when the kinks have enough time to lose energy througltsand”) placed on a plate undergoing sinusoidal vibrations
their interaction, adjusting to their new trapped state. It ig7]. These PCFCs were independently named oscillons, and
thus expected that these bound states form for small relativiheir discovery has triggered a host of theoretical work at-
velocities for the kink-antikink pair, although the depen-tempting to model the experimental results. These include
dence on the velocity is far from trivial2]. Once the molecular dynamics simulatio], semicontinuum theories
breather forms, it will remain in its oscillatory state for a [9], Ginzburg-Landau model$10], coupled-map models
remarkably long time, with minimal emission of radiation. [11], order-parameter modelgl2], and other continuum
We are not aware of a detailed study of the lifetimes of thesenodels[13]. The difficulty here is in obtaining macroscopic
laws describing the motion of granular materials, which can
exhibit both solid and fluid properties. Oscillonic behavior
*Electronic address: gleiser@dartmouth.edu has also been found in studies of acoustic instabilities in stars
TPresent address: Laboratory for Applied Mathematics, Mt. Sina[14]. Long-lived, spatially extended oscillatory behavior ap-
School of Medicine, One Gustav L. Levy Place, New York, NY pears to be bringing together research in traditionally very
10029. Electronic address: ats@camelot.mssm.edu distant fields of physics.
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Our goal in this paper is to present a method that is exwhere the vectoz=(m;, ;) (in our casej=1, so we drop
tremely useful in the study of PCFCs arising in the context ofthe i’s), and where{a,b} is a Poisson bracket. Now, we
nonlinear wave models. The numerical challenge arises dudefine the operatoby by Dyz={z,H}. The equations be-
to the peculiar nature of these configurations; although thegome
are well localized, they do radiate some of their energy,
which, for small lattices, will get reflected back, compromis- 7= Dyz, (4)
ing the numerical results. Furthermore, a large amount of
energy may be shed initially as the fie{dr fields settles  which, integrating for timeAt, has the formal solution
(settle into a PCFC. The simplest approach is to set up a
very large spatial lattice, large enough that the outward ra- z(t+ At)=e?Prz(t). (5)
diation will never hit the boundary within the integration
time. Clearly, this approacfused in[4]) is extremely inef- Note that, in general, systems of first-order equations can
ficient for very long-lived PCFCs. An improvement is to use also be written in the forn{4). However, the phase-space
dynamically expanding lattices, that is, lattices that growbehavior of nonsymplectic systems is usually singular. In
ahead of the radiatiof5]. This saves some time, but not general D, is a sum of term®,=D;+D,+---+Dy. To
much as the lifetime becomes fairly large. Clearly, for moresome order imt, we can approximate the exponential of a
detailed studies of these objects, a more efficient numericalum of operators as a product of exponentials, where each
method is badly needed, one that allows for an accuratexponential has one of the operators as its argument. We use
study of very long-lived PCFCs with relatively small lattices. the notation
Although we will introduce the method within the context of
d-dimensional spherically symmetric models, it can be easily (At) (6)
implemented in more complex situations.

The paper is organized as follows. In the next section weo represent
present in detail the numerical integration routine we used,
the fourth-order operator splitting method developed in Ref. (eAtP1ghtD2 - @ADN) (7
[15]. This is followed by a discussion of the adiabatic damp-
ing method we propose for studying long-lived configura-and
tions in small lattices. In Sec. lll we use three-dimensional
oscillons to test the accuracy of the adiabatic damping (AD)T (8)
method by comparing its performance with results obtained
from dynamically expanding lattices. In Sec. IV we presentto represent
an analytical estimate for the minimum radius for the onset
of two-dimensional oscillonic behavior. This estimate is then (eAPn. . . @AtD2gAIDY) 9
tested numerically in Sec. V, where we also display the re-
sult for the lifetime of a few oscillons, which live at least So, for example, the second-order method
three orders of magnitude longer than their three-
dimensional counterparts. We conclude in Sec. VI with a (e2tP1gAP2. .. ADN) (gAPN. . . gAtD2eAD1)  (10)
summary of our results and directions for future work.

is represented by

Il. NUMERICAL TECHNIQUES (AD(ADT. (11)

A. Fourth-order symplectic method . o
In this paper, we use an explicit fourth-order method for

The Hamiltonian field equations for our theory are “splitting” the operator expDyAt). The method i§15]
r= Pt (d;” 5 b aN(P) O (ADTADADT(-2A0(ADTADT(AYT(ADT(AD
X(A)T(AL)(At)(At)(At)(—2At) T(AL)(At)T(AL).
and (12)

b= @ We split the HamiltonianH = 72+ (V ¢)?+V(¢) into

™ two parts,H,;=(V$)?+V(¢) and H,=x2. The action of
the operator ex@tD,) on z is

whered is the number of spatial dimensions, avigkp) is the

potential, taken to be a function of the fiedd To integrate ¢:{¢,H2}={¢,H}= T

these equations, we use a higher-order operator splitting (13)
method, which is symplectic for Hamiltonian systems. In
brief, symplectic methods use the fact that Hamiltonian sys-

tems of equations can be written as

7=0,
which corresponds to integrating E{.4),

z={z,H}, (3) SN 1= "+ At (14)
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where the superscriptindicates the time step, while leaving ¥P)
the value of7r the same. Note that this integration is exact
for these equations. The action of the operator AXp() on
zis
I I I -
¢: 0, Ro Rg Po Y

d—1 (15 FIG. 1. A schematic diagram for the relevant spatial scales in

7-T:{7T,H1}:{77,H}: ( (92¢n+ ( ) z?pd)n_ &¢Vn> , the.implements.ttion of the ADMR; is the linear scale of the PCFC,.
b p R; is the location of the shell where the energy of the PCFC is

. ) . measured, ang, is the starting point of the damping term. Units
which corresponds to integrating E@.6), are set by the particular interactions and dimensionality of the sys-

tem.
(d—1)

"= "+ At &i(ﬁ”-i—

ap¢”—a¢vn) (16)

the oscillon such that the evolution of the oscillon is not
(we use fourth-order spatial differences for the derivativedisturbed, while the outgoing radiation is absorbpee adia-
terms, while leaving the value of the same. Higher-order batic damping methodADM)]. This gives us a new equa-
methods combine the integration of these equations in suchtin of motion,
manner as to cancel higher-order errors in the commutators

[D;,D,]. b+ y(p)p—V3p+V'($)=0. (19
The standard leapfrog method is a second-order symplec- . ) ,

tic method. To see this from our notation, we write The introduction of the nonzero decay term gives us a new

equation forr,
%At)(%At)TZ (eAtDllzeAtDZIZ)(eAtDZ/ZeAtD1/2) 1 o
n+1_
:(eAtDl/ZeAtDzeAID1/2)' (17) w 1+ y(p)At/Z[l— y(p)At/Z
whereD,7m={m,H} andD,¢={¢,H}. Over the course of a 5 (d—1)
simulation, we have +At| 959"+ P d," =gV | (20

Zjina1 = (e*1P1%e41P2e8 D180z, . . gA1D1g41D2210172) Here, v is a function ofp. We sety=0 for all gridpoints less
(18) than po. For gridpoints greater thap,, we sety= 7%(p

— po)?, wherey is asmallconstant. We note that the idea of

Therefore, by first setting the momenta at the half time Stepgdiabatic switching of a linearly increasing dissipation has
the leapfrog method is to alternate the integration of dfe been investigated for discrete breathers in Hamiltonian lat-
and ’s, and then finally to correct the momenta by a ha|ff[ic_es[16]._ For the successful implementation of the method,
time step. Higher-order methods such as the fourth-ordef 1S crucial thatp, be chosen far enough away from the
method above require both swapping and integration witf’CFC S0 as not to interfere with its dynamics. We find that,
negative time steps. for a typical linear scale characterizing the PCFCRyf a
The expected error inp and = from our method is safe cho!ce |Sp0220_R0, although _dlfferent situations may
RNAt®, whereR is a coefficient of orde©(1) given by the call for different choices opg. In Fig. 1, we present a d|a-_
particular method andl is the number of time steps in the 9ram of the relevant scales for the partition of the spatial
simulation[15]. To test the above fourth-order method, we lattice. _ _
run a simulation withN=650000 time steps, wherat The introduction of the damping term reduces our method
—0.01 on an expanding grid. Our expected error at the enf[OM @ symplectic method to an operator splitting method,
of the simulation is of order (6510 5)R. To measure the SINCe the phase space of the system no longer obeys Liou-
actual accuracy of the method, we calculate the change iM!€’s theorem. _
energySE/E over the duration of the simulation and find a _1he smallness of; ensures the very slow increase of the
value SE/E=4x 10~* over 6500 time units, or 650 000 time effective damping with the radial directioHence the name

steps, which is compatible with the expected error. adiabatic damping methodThis method can easily be gen-
eralized for higher dimensional lattices of different geom-

etry. Thep dependence of was chosen such that the first
derivative was zero ghy. This choice gave us better accu-
racy than, for instance, a constant or an exponential depen-
In order to decrease the size of the grid, we want to abeence on radius.

sorb the nonlinear radiation propagating away from the os- We should remark that the adiabatic damping equations
cillon. For a problem involving massless radiation, we couldare mixed hyperbolic-parabolic. It has been claimed that
use absorbing boundary conditions. However, for the probf17], since all higher-order operator splitting methods have
lem at hand, the radiation is nonlinear, with a different dis-operators with backward evolution in time, operator splitting
persion relation for different wave modes. Therefore, we in-methods of order greater than 2 are unstable for parabolic
troduce a damping term at a sufficient distance away fronproblems. Clearly, this is incorrect. We were able to integrate

X Zinjtial

B. Adiabatic damping method: Small lattices
for long simulations
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our mixed hyperbolic-parabolic equations for extremely long S L B L ™
times(over 10 time stepsand found no instability. It is also - -
clear why these methods are stable. The total backward time - -
integration in our method is Alt, but the method integrates 60 Shell Energy -
forward in time for 1@t. Therefore, any instability arising - .
from exponential increase in mode amplitudes from - -
backward-time integration will be resuppressed by the - -
forward-time integration. 40 —

Ill. TESTING THE ADIABATIC DAMPING METHOD r 7
WITH THREE-DIMENSIONAL OSCILLONS B 7

20 - —
The Lagrangian for our field theory is L i
L=n [ e varig- 1o v, @ : :
S R B B N
whered is the number of spatial dimensioffer usd=2 or 0 2000 4000 6000
d=3 only), and we use the degenerate double-well potential Time

FIG. 2. Shell energy vs time: The evolution of the energy in a
V()= £(¢2_¢2 )2 (22) shell of radiusR;=5R, about the oscillon core as a function of
4 vac time. Two graphs are superimposed, the exact solution and the so-
lution using a small 1024 point grid with damping. From left to
As shown in[4,5], oscillons can easily be found by setting right, we see the curves f®,=2.5, 2.6, and 2.7. Time and space
the initial field configuration with a Gaussian or a tanh pro-are given in units ok ¥?¢, .. Energy is given in units of, ¢/ X.
file. Here, we will use the Gaussian ansatz,

_ R ent on grids with damping. We simulate oscillons on two
¢=(de=dracle oF buac, (23 grids. One simulation is performed on an expanding grid

(Ax=0.2), the other on a 1024 point grid with physical size

where R, is the core radius andb,,. is the asymptotic N . :
vacuum value of the fieldp, sets the offset of the field from 2_04'8 (@x=0.2), where the damping with constan

the vacuum at the core, the central displacement from equi= 9-005 begins gb=20R,. In Fig. 2, we have superimposed
librium. the graph of an expanding grid simulation, which we take to

The evolution of the configuration can be divided into Pe the exact result, and the approximate result, which comes

three stages. Initially, the field sheds enough energy to settféom a simulation with a damping region for several choices
(or not, if the initial parameter®, and ¢ are outside the Of initial radii Ro. (All physical quantities are quoted in di-
allowed range for oscillonic behaviointo the oscillon con- mensionless units. For three-dimensional relativistic field
figuration. The lifetime of the oscillon stage is sensitive totheories, distance and time are given in units.of%¢_ % .)
the choices oR, and ¢, although the energy of the con- The plots denote the time evolution of the total energy in a
figuration is not. This is, in fact, what justifies identifying shell about the coréwve have set our shell ®,=5R,).
these PCFCs as a single configuration. We conjecture that As is apparent from Fig. 2, oscillon lifetimes are essen-
the lifetime of the oscillon configuration can be traced to thetja|ly indistinguishable for the time spacings of the data out-
perturbations induced by the different choices of initial pa-pyt in these graphs. Evolution of oscillons generated from
rameters, which will tend to increase the amount of radiationpjtial configurations with larger radii agrees less well with
being emitted. However, we so far have not been able tgne exact oscillons due to a greater interaction between long-
prove this. The final stage is the oscillon’s demise. As Showr\}vavelength modes, generated as the oscillon decays at the
in Ref. [4], due to the small but steady radiation from the eng of its lifetime, and the reflecting boundary at the far end
oscillon, at some point the maximum amplitude allovi#tt  of the damped part of the grid. This can be cured by using a
is, when ¢.=0) falls approximately below the inflection larger grid and increasing,. Notwithstanding these consid-
point of the potential, the motion becomes linear, ahd erations, the agreement in lifetimes is still extremely good
— ¢, ac €Xponentially fast. for 1024 gridpoints, as is shown next. The reason that long-
As one would expect, one must understand somethingvavelength modes introduce difficulties with this method is
about the evolution of the oscillon to correctly gt since  that they are damped less efficiently than short-wavelength
damping must not interfere with the evolution of the oscil- modes[the damping is roughly proportional to expk?t)].
lon. As a rule of thumb, the better localized the configura- In Fig. 3, we plot the logarithntbase 10 of the absolute
tion, the closelpy can be toR,. The fact that oscillons be- value of AES/E¢ as a function of time, wheré&; is the
have asymptotically as expp) certainly helps. As remarked energy in a shell of radiusR, about the origin. We chose
above, we found thagty,=20R, worked well. Ro=2.7 in this exampleAE; is the difference between the
To make sure that the damping region we have introduceénergies of the expanding grid simulation and the damped
does not interfere with the evolution of the oscillon, we simulation. The shell energies agree with each other to better
checked that the oscillon lifetime is not significantly differ- than one hundredth of a percent until the oscillon decays.
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- i Shell Energy _
. log, |AE_/E |

0 2000 4000 6000 0 500 1000 1500

. Time
Time

FIG. 3. AES/E vs time: The relative difference between the FIG. 4. ‘Q?'he" energy vs time: The _evolution of the energy in a
expanding grid and damped grid solutions as a function of time for?heII (l)f.tr.a?'USF;S.?SRO aboutfthe (t))srt:tlllon tcotre as_z; g;nclt'(;q of
Ro=2.7. Note that through all of the lifetime of the oscillon the m;t;. {"7'2 Cog il(;gsgvere, r_onj 0 _om fo OR;])_I_ etk d
solutions agree to better than one-hundredth of a percent. The Iog:J;{-' » L fo, an .f\/—. nergy is in units ¢f,., while space an
rithm is base 10, and time is in units 8%, o . time are in units oA ¢,z

IV. ANALYTICAL ESTIMATE FOR ONSET

2 3
2 _ Y V-
OF TWO-DIMENSIONAL OSCILLONS ©"(A0,Ro) =2+ 5 T 5 A~ 4A0. 27

2
0
In order to estimate the approximate minimum size atIf we now minimize the frequency as a funiction &f, we

which oscillonlike PCFCs appear in a two-dimensional non—f. d
linear field theory, we begin with the ansatz n

B(rH=At)e Ro+ .., (24) w?(AF",Ro) = ROt (28)
0

where A(t)= ¢(t) — ¢,ac- The Lagrangian for our field We expect an instability to develop fex?<0, giving a bi-
theory is given in Eq(21) with d=2, and the potential is fyrcation atR,= /3: oscillons can only exist in the presence
given in Eqg.(22) as in the case for three-dimensiori@D)  of these instabilities, which ensure tttemporary survival
oscillons. This ansatz restricts the time dependence to tf‘@ the nonlinear regime_ This is reminiscent of the well-
amplitude at the core of the configuration, taking the radiuknown spinodal instability in Ginzburg-Landau systems,
to be a constant parameter. Despite its simplicity, reducing here the growth of instabilities occurs as the system probes
field theory to a model with one degree of freedom, it WaSthe concave part of the potenti&br free-energy densily
used SUCCGSSfU”y for determining the minimum radius of 3[{18] In short, a|though the perturbed solution is exponen-
oscillons in Ref[5]. tially increasing for this linear analysis, we expect nonlinear
Substituting the ansai24) into the Lagrangian and inte- terms to stabilize it, at least temporarily, leading to oscillon
grating over the radial dimension gives an effective Lagrangsolutions. As we will see below, this prediction is quite ac-

ian for the single degree of freedof(t), curate.
RG., 1, Ry , RS R V. RESULTS FOR TWO-DIMENSIONAL OSCILLONS
L=27 gA —ZA —3—2A +€A3— Rk (25)

We can now use the adiabatic damping method to study
two-dimensional oscillons, which preliminary studigsith
The equation of motion is large latticeg have shown to be remarkably long live@re-

vious simulations were stopped as lifetimes went over
) 1 ~10* time units) In Fig. 4, we plot the energy in a shell of
A+ —A+2A+ §A3— 2A%=0. (26)  radiusRs=5R, about the origin as a function of time. Start-
Ro ing with Gaussian initial configurations, we searched for os-
cillons aroundR,= /3, the expected onset value of the os-
We then assume that we can separafe) = Aq(t) + SA(t) cillon solution obtained above, and found the bifurcation at
and investigate harmonic perturbations about the backgrourtthe slightly lower value oRy=1.71, as indicated in the fig-
(assumed stablesolution Ay(t). This leads to a frequency ure.
response of Above this value for the initial radius, our results exhibit
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FIG. 5. Shell energy vs time: Examples of several 2D oscillons.  FIG. 6. Shell energy vs time: Examples of several 2D oscillons
The radii for the initial Gaussian profiles are noted by each curvefrom a tanh initial configuration. The initial radii are noted by each
Energy is in units of¢},., while space and time are in units of curve, withR,=2 and 3 omitted for clarity. Energy is in units of
Wyac- #24c, While space and time are in units gk ¢, 4 -

. . . . VI. SUMMARY AND OUTLOOK
the same behavior as for the three-dimensional oscillons,

with a few different and surprising properties, which are eas- We have presented a method designed for the numerical
ily identified in Fig. 5. First, we could not find a maximum investigation of long-lived field configurations such as
radius above which the initial configurations do not becomeporeathers, oscillons, and other spatially extended persistent
oscillons. (We searched all the way t8,=30.) We recall coherent field configurations. The method uses an adiabati-
that for 3D oscillons obtained from Gaussian initial configu-cally increasing damping term in the equation of motion,
rations, the maximum radius wa&,~4.2 [5]. We suspect placed safely away from the PCFC so as not to interfere with

this peculiar behavior to be a consequence of the fact that, ifis dynamics. We argue that, with this method, it is possible

two dimensions, Gaussian configurations have constant suf follow the dynamical evolution of these objects for ex-

face energy densities, that is, no radial dependetfag. 2D tremely long times, allowing us to obtain accurate results

. oSk 2 with very small lattices. Using three-dimensional oscillons as
Gaussians, the Energy varest At B.RO’ w.hereA.andB an example, we showed that the method allows for accura-
depend on the potential-or initial configurations with tanh

) . e , | cies of a fraction of a percent in the measurement of physical
profiles, we found oscillons within the interval £8y g antities, such as the energy and lifetime, typically of the

=4.5, as indicated in Fig. 6. We note that tanh configurat_ion%rder of one part in 10 We then applied this approach to
with small radii are fairly well approximated by Gaussian jhyestigate two-dimensional oscillons. After obtaining the
configurations, that is, have small surface energy terms.  minimum radius that allows for their existence, we discov-
Second, the energy plateau is not as clearly defined as igyed that lifetimes can exceed’10me units. Although not
the 3D case. For example, a configuration with initial radiusyet proven, it is possible that these time-dependent field con-
Ro=10 evolves into a lower-energy oscillon than the otherfigurations are absolutely stable.
cases in the figure. Also, the oscillon energy for the marginal There are quite a few obvious avenues for future work, in
caseRy=1.73 is lower than the rest. This suggests that thereaddition to the ones mentioned above. It would be straight-
may exist several “excited,” or metastable, oscillonic statesforward to apply the method to more complex geometries,
in two-dimensional models, something worth pursuing. for example, searching for tubelike oscillons, or the study of
Third, we also could not find a finite lifetime for the os- interactions between oscillons, similar to one-dimensional
cillons. Using the adiabatic damping method, we followedkink-antikink scattering studies. As mentioned elsewhere,
the evolution of the oscillons for over 1@ime units without  these configurations may be thermally nucleated during
observing their demise(With our time steps this implies phase transitions, leading to important corrections to decay
more than X 1C° time iterations. This strongly suggests rates and completion timd&0]. Given the longevity of 2D
that these may be time-dependent stable solutions. We awscillons, this may be particularly relevant to systems in the
currently pursuing this issue in more detail, using both anatwo-dimensional Ising universality class. It would also be
lytical and numerical methods. We note that, in theories withinteresting to study “excited oscillons,” that is, non-
conserved particle number, simple time-dependent solutionspherically-symmetric configurations which can be expanded
known as nontopological solitons have been foldd]. into a series of harmonics. Do these configurations decay
However, in the case at hand, the conserved quantity givingnto their ground statéa normal,/”’=0 oscillon or are they
rise to the(possiblé stability of the configuration is not im- completely unstable? It is hoped that future research will
mediately obvious. establish the connection between the various oscillons de-
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