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Long-lived localized field configurations in small lattices: Application to oscillons
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Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755
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~Received 30 August 1999!

Long-lived localized field configurations such as breathers, oscillons, or more complex objects naturally
arise in the context of a wide range of nonlinear models in different numbers of spatial dimensions. We present
a numerical method, which we call theadiabatic damping method, designed to study such configurations in
small lattices. Using three-dimensional oscillons inf4 models as an example, we show that the method
accurately~to one part in 105 or better! reproduces results obtained with static or dynamically expanding
lattices, dramatically cutting down in integration time. We further present results for two-dimensional oscil-
lons, whose lifetimes would be prohibitively long to study with conventional methods.

PACS number~s!: 05.10.2a, 11.27.1d, 05.45.Yv, 47.11.1j
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I. INTRODUCTION

The study of long-lived, localized coherent configuratio
is of great interest to many areas of physics and enginee
In general, these structures arise within the context of
merical studies of effective nonlinear field models, whi
may describe behavior either already observed in the lab
tory or conjectured to exist in phenomena yet to be observ
In contrast to the usual solitonic behavior, which is mark
by localized time-independent configurations, these are ti
dependent configurations, which nevertheless persist for
long times. It is reasonable to suppose that the long lifetim
are due to energy exchange promoted by nonlinear coup
between different modes which efficiently suppresses the
diation of energy away from the configuration. One may c
lectively call thesepersistent coherent field configuration
~PCFCs! in order to distinguish them from the usual sta
coherent configurations that characterize solitonic behav

Perhaps the most well-known PCFCs are the o
dimensional breathers that appear during low-velocity ki
antikink interactions in sine-Gordon andf4 models @1#.
These are bound states characterized by nonlinear os
tions about the energy minimum~or vacuum! of the model,
typically one of the minima in a degenerate double-well p
tential. As argued by Campbellet al., breathers should form
when the kinks have enough time to lose energy thro
their interaction, adjusting to their new trapped state. It
thus expected that these bound states form for small rela
velocities for the kink-antikink pair, although the depe
dence on the velocity is far from trivial@2#. Once the
breather forms, it will remain in its oscillatory state for
remarkably long time, with minimal emission of radiatio
We are not aware of a detailed study of the lifetimes of th
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configurations for obvious reasons: it would take a hu
amount of integration time in order to follow the evolution
these bound states until their demise. The nonlinear natur
the problem also has precluded~at least so far! analytical
estimates for breather lifetimes.

In the mid-1970s, three-dimensional, breatherlike co
figurations were discovered in the context off4 models by
Bogolubsky and Makhankov@3#. These authors found tha
for certain initial conditions, spherically symmetric bubbl
settled into long-lived configurations that they called p
sons. In 1994, one of us rediscovered these configurat
while studying the collapse of subcritical bubbles in the co
text of degenerate and nondegeneratef4 models@4#. Since
the typical behavior characterizing these configurations is
high-frequency oscillation about the global minimum of t
model, the nameoscillon was chosen instead. A further de
tailed analysis revealed more of the remarkable behavio
these configurations, such as the dependence of lifetime
initial radius, the minimal radius for the bubbles to settle in
oscillonic behavior, and the mechanism for their final dem
@5#. Recent work has pointed out the possible relevance
these structures for resonant hadronic states@6#.

These configurations are far from being constrained
relativistic nonlinear field theories. Remarkably similar b
havior has been found in experiments involving grains~or
‘‘sand’’ ! placed on a plate undergoing sinusoidal vibratio
@7#. These PCFCs were independently named oscillons,
their discovery has triggered a host of theoretical work
tempting to model the experimental results. These inclu
molecular dynamics simulations@8#, semicontinuum theories
@9#, Ginzburg-Landau models@10#, coupled-map models
@11#, order-parameter models@12#, and other continuum
models@13#. The difficulty here is in obtaining macroscop
laws describing the motion of granular materials, which c
exhibit both solid and fluid properties. Oscillonic behavi
has also been found in studies of acoustic instabilities in s
@14#. Long-lived, spatially extended oscillatory behavior a
pears to be bringing together research in traditionally v
distant fields of physics.

i
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PRE 62 1369LONG-LIVED LOCALIZED FIELD CONFIGURATIONS . . .
Our goal in this paper is to present a method that is
tremely useful in the study of PCFCs arising in the contex
nonlinear wave models. The numerical challenge arises
to the peculiar nature of these configurations; although t
are well localized, they do radiate some of their ener
which, for small lattices, will get reflected back, comprom
ing the numerical results. Furthermore, a large amoun
energy may be shed initially as the field~or fields! settles
~settle! into a PCFC. The simplest approach is to set u
very large spatial lattice, large enough that the outward
diation will never hit the boundary within the integratio
time. Clearly, this approach~used in@4#! is extremely inef-
ficient for very long-lived PCFCs. An improvement is to u
dynamically expanding lattices, that is, lattices that gr
ahead of the radiation@5#. This saves some time, but no
much as the lifetime becomes fairly large. Clearly, for mo
detailed studies of these objects, a more efficient numer
method is badly needed, one that allows for an accu
study of very long-lived PCFCs with relatively small lattice
Although we will introduce the method within the context
d-dimensional spherically symmetric models, it can be ea
implemented in more complex situations.

The paper is organized as follows. In the next section
present in detail the numerical integration routine we us
the fourth-order operator splitting method developed in R
@15#. This is followed by a discussion of the adiabatic dam
ing method we propose for studying long-lived configu
tions in small lattices. In Sec. III we use three-dimensio
oscillons to test the accuracy of the adiabatic damp
method by comparing its performance with results obtain
from dynamically expanding lattices. In Sec. IV we prese
an analytical estimate for the minimum radius for the on
of two-dimensional oscillonic behavior. This estimate is th
tested numerically in Sec. V, where we also display the
sult for the lifetime of a few oscillons, which live at lea
three orders of magnitude longer than their thre
dimensional counterparts. We conclude in Sec. VI with
summary of our results and directions for future work.

II. NUMERICAL TECHNIQUES

A. Fourth-order symplectic method

The Hamiltonian field equations for our theory are

ṗ5]r
2f1

~d21!

r
]rf2]fV~f! ~1!

and

ḟ5p, ~2!

whered is the number of spatial dimensions, andV(f) is the
potential, taken to be a function of the fieldf. To integrate
these equations, we use a higher-order operator split
method, which is symplectic for Hamiltonian systems.
brief, symplectic methods use the fact that Hamiltonian s
tems of equations can be written as

ż5$z,H%, ~3!
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where the vectorz5(p i ,f i) ~in our case,i 51, so we drop
the i ’s!, and where$a,b% is a Poisson bracket. Now, w
define the operatorDH by DHz[$z,H%. The equations be-
come

ż5DHz, ~4!

which, integrating for timeDt, has the formal solution

z~ t1Dt !5eDtDHz~ t !. ~5!

Note that, in general, systems of first-order equations
also be written in the form~4!. However, the phase-spac
behavior of nonsymplectic systems is usually singular.
general,DH is a sum of termsDH5D11D21•••1DN . To
some order inDt, we can approximate the exponential of
sum of operators as a product of exponentials, where e
exponential has one of the operators as its argument. We
the notation

~Dt ! ~6!

to represent

~eDtD1eDtD2 . . . eDtDN! ~7!

and

~Dt !T ~8!

to represent

~eDtDN
•••eDtD2eDtD1!. ~9!

So, for example, the second-order method

~eDtD1eDtD2
•••eDtDN!~eDtDN

•••eDtD2eDtD1! ~10!

is represented by

~Dt !~Dt !T. ~11!

In this paper, we use an explicit fourth-order method
‘‘splitting’’ the operator exp(DHDt). The method is@15#

~Dt !T~Dt !~Dt !T~22Dt !~Dt !T~Dt !T~Dt !T~Dt !T~Dt !

3~Dt !T~Dt !~Dt !~Dt !~Dt !~22Dt !T~Dt !~Dt !T~Dt !.

~12!

We split the HamiltonianH5p21(¹f)21V(f) into
two parts,H15(¹f)21V(f) and H25p2. The action of
the operator exp(DtD2) on z is

ḟ5$f,H2%5$f,H%5p,
~13!

ṗ50,

which corresponds to integrating Eq.~14!,

fn115fn1Dtpn, ~14!
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1370 PRE 62M. GLEISER AND A. SORNBORGER
where the superscriptn indicates the time step, while leavin
the value ofp the same. Note that this integration is exa
for these equations. The action of the operator exp(DtD1) on
z is

ḟ50,
~15!

ṗ5$p,H1%5$p,H%5S ]r
2fn1

~d21!

r
]rfn2]fVnD ,

which corresponds to integrating Eq.~16!,

pn115pn1DtS ]r
2fn1

~d21!

r
]rfn2]fVnD ~16!

~we use fourth-order spatial differences for the derivat
terms!, while leaving the value off the same. Higher-orde
methods combine the integration of these equations in su
manner as to cancel higher-order errors in the commuta
@D1 ,D2#.

The standard leapfrog method is a second-order symp
tic method. To see this from our notation, we write

~ 1
2 Dt !~ 1

2 Dt !T5~eDtD1/2eDtD2/2!~eDtD2/2eDtD1/2!

5~eDtD1/2eDtD2eDtD1/2!, ~17!

whereD1p5$p,H% andD2f5$f,H%. Over the course of a
simulation, we have

zf inal5~eDtD1/2eDtD2eDtD1eDtD2
•••eDtD1eDtD2eDtD1/2!

3zinitial . ~18!

Therefore, by first setting the momenta at the half time s
the leapfrog method is to alternate the integration of thef ’s
and p ’s, and then finally to correct the momenta by a h
time step. Higher-order methods such as the fourth-or
method above require both swapping and integration w
negative time steps.

The expected error inf and p from our method is
RNDt5, whereR is a coefficient of orderO(1) given by the
particular method andN is the number of time steps in th
simulation @15#. To test the above fourth-order method, w
run a simulation withN5650 000 time steps, whereDt
50.01 on an expanding grid. Our expected error at the
of the simulation is of order (6.531025)R. To measure the
actual accuracy of the method, we calculate the chang
energydE/E over the duration of the simulation and find
valuedE/E5431024 over 6500 time units, or 650 000 tim
steps, which is compatible with the expected error.

B. Adiabatic damping method: Small lattices
for long simulations

In order to decrease the size of the grid, we want to
sorb the nonlinear radiation propagating away from the
cillon. For a problem involving massless radiation, we co
use absorbing boundary conditions. However, for the pr
lem at hand, the radiation is nonlinear, with a different d
persion relation for different wave modes. Therefore, we
troduce a damping term at a sufficient distance away fr
t
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the oscillon such that the evolution of the oscillon is n
disturbed, while the outgoing radiation is absorbed@the adia-
batic damping method~ADM !#. This gives us a new equa
tion of motion,

f̈1g~r!ḟ2¹2f1V8~f!50. ~19!

The introduction of the nonzero decay term gives us a n
equation forp,

pn115
1

11g~r!Dt/2F pn

12g~r!Dt/2

1DtS ]r
2fn1

~d21!

r
]rfn2]fVnD G . ~20!

Here,g is a function ofr. We setg50 for all gridpoints less
than r0. For gridpoints greater thanr0, we set g5h2(r
2r0)2, whereh is asmallconstant. We note that the idea o
adiabatic switching of a linearly increasing dissipation h
been investigated for discrete breathers in Hamiltonian
tices@16#. For the successful implementation of the metho
it is crucial thatr0 be chosen far enough away from th
PCFC so as not to interfere with its dynamics. We find th
for a typical linear scale characterizing the PCFC ofR0, a
safe choice isr0*20R0, although different situations ma
call for different choices ofr0. In Fig. 1, we present a dia
gram of the relevant scales for the partition of the spa
lattice.

The introduction of the damping term reduces our meth
from a symplectic method to an operator splitting metho
since the phase space of the system no longer obeys L
ville’s theorem.

The smallness ofh ensures the very slow increase of th
effective damping with the radial direction.~Hence the name
adiabatic damping method.! This method can easily be gen
eralized for higher dimensional lattices of different geo
etry. Ther dependence ofg was chosen such that the fir
derivative was zero atr0. This choice gave us better accu
racy than, for instance, a constant or an exponential dep
dence on radius.

We should remark that the adiabatic damping equati
are mixed hyperbolic-parabolic. It has been claimed t
@17#, since all higher-order operator splitting methods ha
operators with backward evolution in time, operator splitti
methods of order greater than 2 are unstable for parab
problems. Clearly, this is incorrect. We were able to integr

FIG. 1. A schematic diagram for the relevant spatial scales
the implementation of the ADM.R0 is the linear scale of the PCFC
Rs is the location of the shell where the energy of the PCFC
measured, andr0 is the starting point of the damping term. Uni
are set by the particular interactions and dimensionality of the s
tem.
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PRE 62 1371LONG-LIVED LOCALIZED FIELD CONFIGURATIONS . . .
our mixed hyperbolic-parabolic equations for extremely lo
times~over 109 time steps! and found no instability. It is also
clear why these methods are stable. The total backward
integration in our method is 4Dt, but the method integrate
forward in time for 16Dt. Therefore, any instability arising
from exponential increase in mode amplitudes fro
backward-time integration will be resuppressed by
forward-time integration.

III. TESTING THE ADIABATIC DAMPING METHOD
WITH THREE-DIMENSIONAL OSCILLONS

The Lagrangian for our field theory is

L5pE ~2r !(d21)dr@ 1
2 ḟ22 1

2 f822V~f!#, ~21!

whered is the number of spatial dimensions~for us d52 or
d53 only!, and we use the degenerate double-well poten

V~f!5
l

4
~f22fvac

2 !2. ~22!

As shown in@4,5#, oscillons can easily be found by settin
the initial field configuration with a Gaussian or a tanh p
file. Here, we will use the Gaussian ansatz,

f5~fc2fvac!e
2r2/R0

2
1fvac , ~23!

where R0 is the core radius andfvac is the asymptotic
vacuum value of the field.fc sets the offset of the field from
the vacuum at the core, the central displacement from e
librium.

The evolution of the configuration can be divided in
three stages. Initially, the field sheds enough energy to s
~or not, if the initial parametersR0 and fc are outside the
allowed range for oscillonic behavior! into the oscillon con-
figuration. The lifetime of the oscillon stage is sensitive
the choices ofR0 and fc , although the energy of the con
figuration is not. This is, in fact, what justifies identifyin
these PCFCs as a single configuration. We conjecture
the lifetime of the oscillon configuration can be traced to
perturbations induced by the different choices of initial p
rameters, which will tend to increase the amount of radiat
being emitted. However, we so far have not been able
prove this. The final stage is the oscillon’s demise. As sho
in Ref. @4#, due to the small but steady radiation from t
oscillon, at some point the maximum amplitude allowed~that
is, when ḟc50) falls approximately below the inflectio
point of the potential, the motion becomes linear, andfc
→fvac exponentially fast.

As one would expect, one must understand someth
about the evolution of the oscillon to correctly setr0, since
damping must not interfere with the evolution of the osc
lon. As a rule of thumb, the better localized the configu
tion, the closerr0 can be toR0. The fact that oscillons be
have asymptotically as exp(2r) certainly helps. As remarked
above, we found thatr0520R0 worked well.

To make sure that the damping region we have introdu
does not interfere with the evolution of the oscillon, w
checked that the oscillon lifetime is not significantly diffe
e
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ent on grids with damping. We simulate oscillons on tw
grids. One simulation is performed on an expanding g
(Dx50.2), the other on a 1024 point grid with physical si
204.8 (Dx50.2), where the damping with constanth
50.005 begins atr520R0. In Fig. 2, we have superimpose
the graph of an expanding grid simulation, which we take
be the exact result, and the approximate result, which co
from a simulation with a damping region for several choic
of initial radii R0. ~All physical quantities are quoted in di
mensionless units. For three-dimensional relativistic fi
theories, distance and time are given in units ofl21/2fvac

21 .)
The plots denote the time evolution of the total energy in
shell about the core~we have set our shell atRs55R0).

As is apparent from Fig. 2, oscillon lifetimes are esse
tially indistinguishable for the time spacings of the data o
put in these graphs. Evolution of oscillons generated fr
initial configurations with larger radii agrees less well wi
the exact oscillons due to a greater interaction between lo
wavelength modes, generated as the oscillon decays a
end of its lifetime, and the reflecting boundary at the far e
of the damped part of the grid. This can be cured by usin
larger grid and increasingr0. Notwithstanding these consid
erations, the agreement in lifetimes is still extremely go
for 1024 gridpoints, as is shown next. The reason that lo
wavelength modes introduce difficulties with this method
that they are damped less efficiently than short-wavelen
modes@the damping is roughly proportional to exp(2k2t)].

In Fig. 3, we plot the logarithm~base 10! of the absolute
value of DEs /Es as a function of time, whereEs is the
energy in a shell of radius 5R0 about the origin. We chose
R052.7 in this example.DEs is the difference between th
energies of the expanding grid simulation and the dam
simulation. The shell energies agree with each other to be
than one hundredth of a percent until the oscillon decays

FIG. 2. Shell energy vs time: The evolution of the energy in
shell of radiusRs55R0 about the oscillon core as a function o
time. Two graphs are superimposed, the exact solution and the
lution using a small 1024 point grid with damping. From left
right, we see the curves forR052.5, 2.6, and 2.7. Time and spac
are given in units ofl1/2fvac . Energy is given in units offvac /Al.
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1372 PRE 62M. GLEISER AND A. SORNBORGER
IV. ANALYTICAL ESTIMATE FOR ONSET
OF TWO-DIMENSIONAL OSCILLONS

In order to estimate the approximate minimum size
which oscillonlike PCFCs appear in a two-dimensional no
linear field theory, we begin with the ansatz

f~r ,t !5A~ t !e2r 2/R0
2
1fvac , ~24!

where A(t)[fc(t)2fvac . The Lagrangian for our field
theory is given in Eq.~21! with d52, and the potential is
given in Eq.~22! as in the case for three-dimensional~3D!
oscillons. This ansatz restricts the time dependence to
amplitude at the core of the configuration, taking the rad
to be a constant parameter. Despite its simplicity, reducin
field theory to a model with one degree of freedom, it w
used successfully for determining the minimum radius of
oscillons in Ref.@5#.

Substituting the ansatz~24! into the Lagrangian and inte
grating over the radial dimension gives an effective Lagra
ian for the single degree of freedomA(t),

L52pS R0
2

8
Ȧ22

1

4
A22

R0
2

32
A41

R0
2

6
A32

R0
2

4
A2D . ~25!

The equation of motion is

Ä1
2

R0
2

A12A1
1

2
A322A250. ~26!

We then assume that we can separateA(t)5A0(t)1dA(t)
and investigate harmonic perturbations about the backgro
~assumed stable! solution A0(t). This leads to a frequenc
response of

FIG. 3. DEs /Es vs time: The relative difference between th
expanding grid and damped grid solutions as a function of time
R052.7. Note that through all of the lifetime of the oscillon th
solutions agree to better than one-hundredth of a percent. The
rithm is base 10, and time is in units ofl1/2fvac .
t
-

he
s
a

s

-

nd

v2~A0 ,R0!521
2

R0
2

1
3

2
A0

224A0 . ~27!

If we now minimize the frequency as a function ofA0, we
find

v2~A0
min,R0!5

2

R0
2

2
2

3
. ~28!

We expect an instability to develop forv2,0, giving a bi-
furcation atR05A3: oscillons can only exist in the presenc
of these instabilities, which ensure the~temporary! survival
of the nonlinear regime. This is reminiscent of the we
known spinodal instability in Ginzburg-Landau system
where the growth of instabilities occurs as the system pro
the concave part of the potential~or free-energy density!
@18#. In short, although the perturbed solution is expone
tially increasing for this linear analysis, we expect nonline
terms to stabilize it, at least temporarily, leading to oscill
solutions. As we will see below, this prediction is quite a
curate.

V. RESULTS FOR TWO-DIMENSIONAL OSCILLONS

We can now use the adiabatic damping method to st
two-dimensional oscillons, which preliminary studies~with
large lattices! have shown to be remarkably long lived.~Pre-
vious simulations were stopped as lifetimes went ovet
;104 time units.! In Fig. 4, we plot the energy in a shell o
radiusRs55R0 about the origin as a function of time. Star
ing with Gaussian initial configurations, we searched for
cillons aroundR05A3, the expected onset value of the o
cillon solution obtained above, and found the bifurcation
the slightly lower value ofR0.1.71, as indicated in the fig
ure.

Above this value for the initial radius, our results exhib

r

a-

FIG. 4. Shell energy vs time: The evolution of the energy in
shell of radiusRs55R0 about the oscillon core as a function o
time. Initial conditions were, from bottom to top,R051.69, 1.71,
1.72, 1.73, and 1.75. Energy is in units offvac

2 , while space and
time are in units ofAlfvac .
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PRE 62 1373LONG-LIVED LOCALIZED FIELD CONFIGURATIONS . . .
the same behavior as for the three-dimensional oscillo
with a few different and surprising properties, which are e
ily identified in Fig. 5. First, we could not find a maximum
radius above which the initial configurations do not beco
oscillons.~We searched all the way toR0530.) We recall
that for 3D oscillons obtained from Gaussian initial config
rations, the maximum radius wasR0.4.2 @5#. We suspect
this peculiar behavior to be a consequence of the fact tha
two dimensions, Gaussian configurations have constant
face energy densities, that is, no radial dependence.~For 2D
Gaussians, the energy varies asE5A1BR0

2, whereA andB
depend on the potential.! For initial configurations with tanh
profiles, we found oscillons within the interval 1.5&R0

&4.5, as indicated in Fig. 6. We note that tanh configurati
with small radii are fairly well approximated by Gaussia
configurations, that is, have small surface energy terms.

Second, the energy plateau is not as clearly defined a
the 3D case. For example, a configuration with initial rad
R0510 evolves into a lower-energy oscillon than the oth
cases in the figure. Also, the oscillon energy for the marg
caseR051.73 is lower than the rest. This suggests that th
may exist several ‘‘excited,’’ or metastable, oscillonic sta
in two-dimensional models, something worth pursuing.

Third, we also could not find a finite lifetime for the os
cillons. Using the adiabatic damping method, we follow
the evolution of the oscillons for over 107 time units without
observing their demise.~With our time steps this implies
more than 23109 time iterations.! This strongly suggests
that these may be time-dependent stable solutions. We
currently pursuing this issue in more detail, using both a
lytical and numerical methods. We note that, in theories w
conserved particle number, simple time-dependent solut
known as nontopological solitons have been found@19#.
However, in the case at hand, the conserved quantity giv
rise to the~possible! stability of the configuration is not im
mediately obvious.

FIG. 5. Shell energy vs time: Examples of several 2D oscillo
The radii for the initial Gaussian profiles are noted by each cu
Energy is in units offvac

2 , while space and time are in units o
Alfvac .
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VI. SUMMARY AND OUTLOOK

We have presented a method designed for the nume
investigation of long-lived field configurations such
breathers, oscillons, and other spatially extended persis
coherent field configurations. The method uses an adiab
cally increasing damping term in the equation of motio
placed safely away from the PCFC so as not to interfere w
its dynamics. We argue that, with this method, it is possi
to follow the dynamical evolution of these objects for e
tremely long times, allowing us to obtain accurate resu
with very small lattices. Using three-dimensional oscillons
an example, we showed that the method allows for accu
cies of a fraction of a percent in the measurement of phys
quantities, such as the energy and lifetime, typically of
order of one part in 105. We then applied this approach t
investigate two-dimensional oscillons. After obtaining t
minimum radius that allows for their existence, we disco
ered that lifetimes can exceed 107 time units. Although not
yet proven, it is possible that these time-dependent field c
figurations are absolutely stable.

There are quite a few obvious avenues for future work
addition to the ones mentioned above. It would be straig
forward to apply the method to more complex geometri
for example, searching for tubelike oscillons, or the study
interactions between oscillons, similar to one-dimensio
kink-antikink scattering studies. As mentioned elsewhe
these configurations may be thermally nucleated dur
phase transitions, leading to important corrections to de
rates and completion times@20#. Given the longevity of 2D
oscillons, this may be particularly relevant to systems in
two-dimensional Ising universality class. It would also
interesting to study ‘‘excited oscillons,’’ that is, non
spherically-symmetric configurations which can be expan
into a series of harmonics. Do these configurations de
into their ground state~a normal,l 50 oscillon! or are they
completely unstable? It is hoped that future research
establish the connection between the various oscillons

.
.

FIG. 6. Shell energy vs time: Examples of several 2D oscillo
from a tanh initial configuration. The initial radii are noted by ea
curve, withR052 and 3 omitted for clarity. Energy is in units o
fvac

2 , while space and time are in units ofAlfvac .
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scribed in the literature as obeying some simple gen
principles.
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